Fine-tuning molecular energy levels by nonresonant laser pulses.

نویسندگان

  • Mikhail Lemeshko
  • Bretislav Friedrich
چکیده

We evaluate the shifts imparted to vibrational and rotational levels of a linear molecule by a nonresonant laser field at intensities of up to 10(12) W/cm(2). Both types of shift are found to be either positive or negative, depending on the initial rotational state acted upon by the field. An adiabatic field-molecule interaction imparts a rotational energy shift which is negative and exceeds the concomitant positive vibrational shift by a few orders of magnitude. The rovibrational states are thus pushed downward in such a field. A nonresonant pulsed laser field that interacts nonadiabatically with the molecule is found to impart rotational and vibrational shifts of the same order of magnitude. The nonadiabatic energy transfer occurs most readily at a pulse duration which amounts to about a tenth of the molecule's rotational period and vanishes when the sudden regime is attained for shorter pulses. We applied our treatment to the much-studied (87)Rb(2) molecule in the last bound vibrational levels of its lowest singlet and triplet electronic states. Our calculations indicate that 15 and 1.5 ns laser pulses of an intensity in excess of 5 x 10(9) W/cm(2) are capable of dissociating the molecule due to the vibrational shift. Lesser shifts can be used to fine-tune the rovibrational levels and thereby affect collisional resonances by the nonresonant light. The energy shifts due to laser intensities of 10(9) W/cm(2) may be discernible spectroscopically, with a 10 MHz resolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient nonresonant dipole force on molecules by a tightly focused laser

*Correspondence: Doo Soo Chung, Molecule Optics and Bioanalytical Chemistry Lab, Department of Chemistry, Seoul National University, Seoul 151-747, South Korea e-mail: [email protected]; Bum Suk Zhao, Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Bldg. 103, Ulsan 689-798, South Korea e-mail: [email protected] When a molecule...

متن کامل

Probing weakly bound molecules with nonresonant light.

We show that weakly bound molecules can be probed by "shaking" in a pulsed nonresonant laser field. The field introduces a centrifugal term which expels the highest vibrational level from the potential that binds it. Our numerical simulations applied to the Rb(2) and KRb Feshbach molecules indicate that shaking by feasible laser pulses can be used to accurately recover the square of the vibrati...

متن کامل

Fine control of terahertz radiation from filamentation by molecular lensing in air.

We demonstrate a method to control remotely the terahertz (THz) source in air based on the bifilamentation of femtosecond laser pulses. By fine tuning the time delay between the two pulses, a significant modulation of the THz intensity from bifilamentation is observed. The phenomenon is attributed to the molecule quantum lensing effect around the air molecule revival time, which changes the sep...

متن کامل

Growth, Characterization of Cu Nanoparticles Thin Film by Nd: YAG Laser Pulses Deposition

We report the growth and characterization of Cu nanoparticles thin film of on glass substrate by pulse laser deposition method. The Cu thin film prepared with different energy 50, 60, 70, and 80 mJ. The energy effect on the morphological, structural and optical properties were studied by AFM, XRD and UV-Visible spectrophotometer. Surface topography studied by atomic force microscopy revealed na...

متن کامل

Field-free three dimensional molecular axis alignment.

We investigate strategies for field-free three dimensional molecular axis alignment using strong nonresonant laser fields under experimentally realistic conditions. Using the polarizabilites and rotational constants of an asymmetric top rotor molecule (ethene, C2H4), we consider three different methods for axis alignment of a Boltzmann distribution of rotors at 4 K. Specifically, we compare the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 114 36  شماره 

صفحات  -

تاریخ انتشار 2010